adaptive-vision.com

Zebra
Aurora’ Vision

Aurora Vision Studio 5.6

Extensibility

Created: 9/25/2025

Product version: 5.6.1.79554

Table of content:

e Creating User Filters
e Debugging User Filters
e Creating User Types

https://www.adaptive-vision.com

Creating User Filters
Note 1: Creating user filters requires C/C++ programming skills.

Note 2: with your own C/C++ code you can easily crash the entire application. we are not able to protect
against that.

Table of Contents

1. Introduction
1. Prerequisites
2. User Filter Libraries Location
3. Adding New Global User Filter Libraries
4. Adding New Local User Filter Libraries
2. Developing User Filters
1. User Filter Project Configuration
2. Basic User Filter Example
3. Structure of User Filter Class
1. Structure of Define Method
2. Structure of Invoke Method
4. Using Arrays
5. Diagnostic Mode Execution and Diagnostic Outputs
6. Filter work cancellation
7. Using Dependent DLL
3. Advanced Topics
1. Using the Full version of AVL
2. Accessing Console from User Filter
3. Generic User Filters
4. Creating User Types in User Filters
4. Troubleshooting and examples
1. Upgrading User Filters to Newer Versions of Aurora Vvision Studio
2. Building x64 User Filters in Microsoft Vvisual Studio Express Edition
3. Remarks
4. Example: Image Acquisition from IDS Cameras
5. Example: Using PCL library in Aurora Vision Studio

Introduction
User filters are written in C/C++ and allow the advanced users to extend capabilities of Aurora Vvision

Studio with virtually no constraints. They can be used to support a new camera model, to communicate with
external devices, to add application-specific image processing operations and more.

Prerequisites

To create a user filter you will need:

. ag installed Microsoft visual Studio 2015/2017/2019 for C++, Express Edition (free) or any higher
e 1t1on,

e C/C++ programming skills.

User filters are grouped in user filter Tibraries. Every user filter Tibrary is a single .d11 file built
using Microsoft visual Studio. It can contain one or more filters that can be used in programs developed
with Aurora Vvision Studio.

User Filter Libraries Location
There are two types of user filter libraries:

e Global - once created or imported to Aurora Vision Studio they can be used in all projects. The
filters from such libraries are visible in the Libraries tab of the Toolbox.

e Local - belong to specific projects of Aurora vision Studio. The filters from such libraries are
visible only in the project that the Tibrary has been added to.

A solution (.sTn file) of a global user f11ter Tlibrary can be 1ocated in any location on your hard disk,

s
depends on the version and the edition) and this path is set in the initial sett1ngs of the generated
Microsoft visual Studio project. For global user filter libraries, this path must not be changed because
Aurora Vision Studio monitors this directory for changes of the .d11 files. The Global User Filter .d11

Runtime\Filters\x64 (again, the exact path depends on the version and edition). For 32 bit edition the
last subdirectory should be changed from x64 to win32. The Local User Filter .d11 file for Aurora Vision
Executor has to be located in path configured in the User Filter properties. You can modify this path by

editing user filters Tlibrary properties in Project Explorer.

A Tocal user filter library is a part of the project developed with Aurora vision Studio and both source
and output .d11 files can be Tocated anywhere on the hard drive. Use the Project Explorer task panel to

check or modify paths to the output .d11 and Microsoft visual Studio solution files of the user filter
Tibrary. The changes of the output .d11 file are monitored by Aurora Vision Studio irrespectively of the
file location. It's a good practice to keep the Tocal user filter library sources (and the output .d11)
relatively to the Tocation of the developed project, for example in a subdirectory of the project.

Adding New Global uUser Filter Libraries

To add a new user filter library, start with File » Add/Modify Global User Filters » New Global User
Filter Library....

O Aurara Vision Studio 5.2 Professional (6 PT) - Program

File | Edit Program View Tools Help

= Mew Sl L P e e 5 |,
Open... Ctrl+0
pen T = X | Program Edior - Design
Open Example... ;i
" 5 s d’,‘+ = | {5} Main
ed OpenDeep Learning Example...
i Open Tutorial..,
‘ Add/Modify Global User Filters 3 ‘ Ei New Global User Filter Library...
Save Ctrl+§ Bl Existing Global User Filter Library...

Save As... Open Studic Global User Filters Directory...

Open Runtime Global User Filters Directory...

H

2

¥ Connectto Remote Executor...
EJJ Export to Runtime Executable...
cw

Generate C++ Code...

fkr Generate NET Macrofilter Interface...
Recent Projects 3

8] Exit Aurora Vision Studio Alt+Fa

The other option is to use Create New Local User Filter Library button from Project Explorer panel.

A dialog box will appear where you should choose:

e name for the new library,

o type of the library: local (available in current project only) or global (available in all projects),
e location of the solution directory,

e version of Microsoft visual Studio (2015, 2017 or 2019),

o whether Microsoft visual Studio should be opened automatically,

o whether the code of example user filters should be added to the solution - good idea for users with
less experience with user filters programming.

If you choose Microsoft visual Studio to be opened, you can build this solution instantly. A new library
of filters will be created and after a few seconds Toaded to Aurora Vision Studio. Switch back to Aurora
Vision Studio to see the new filters 1in:

e Appropriate categories of Libraries tab (global user filters, category in Libraries tab is based on
the category set in filter code)

Toolbox - 0 X
Do Jx«

i Basic A

® Conversions

Data Flow

& System

-Third Party (thirdpartysdkfilters.dil)

& Camera Support

Conversions

Hardware Support

Image

-User Filters (idsfilters_x64.dIl)

Camera Support

-User Filters (myownfilter_x64.dIl)

Basic

Image

Profile

Region v

T Toolbox] Project Explorer

e Project Explorer (local user filters)

Project Explorer - o x
ne @ %0 XIQI%
=l Program
{£) Main
. CustomThreshold
CustomRegionArea
SineProfile
Duplicatestring
AccumulateRealArray
RunningAverage
ChannelEdgeness

You can work simultaneously in both Microsoft visual Studio and Aurora Vision Studio. Any time the C++
code 1is built, the filters will get reloaded. Just re-run your program in Aurora Vision Studio to see what
has changed.

If you do not see your filters in the above-mentioned locations, make sure that they have been compiled
correctly in an architecture compatible with your Aurora vision Studio architecture: x86 (wWin32) or x64.

Adding New Local User Filter Libraries

To add a new Tocal user filter use the "Create New Local User Filter Library.." button in the Project
Explorer panel as on the image below:

Project Explorer ~ § X ProgamEd
@ = Wee G0 xI1Q/9 =[om
= Program = i
9 N |Create New Local User Filter Library... i
£} Main

Developing User Filters

User Filter Project Configuration

User filter project files (.s1ln and .vcproj) are generated by Aurora Vvision Studio during adding new user
filter Tibrary.

The settings of user filter project are gathered in .props file available in props subdirectory of the

If you want to configure the existing project to be a valid user filter Tibrary, please use the proper
.props file (file with vi40 suffix is dedicated for Microsoft visual Studio 2015, vI41 for 2017 and vi42
for 2019).

Basic User Filter Example

Example below shows whole source code for basic user filter. In this example filter is making a simple
threshold operation on an 8-bit image.

#include "userFilter.h"
#include "AVL_Lite.h"

#include "userFilterLibrary.hxx"

namespace avs
{
// Example image processing filter
class customThreshold : public UserFilter
{
private:
// Non-trivial outputs must be defined as a filed to retain data after filter execution.
avl::Image outImage;

public:

// Defines the inputs, the outputs and the filter metadata
void Define() override

{

SetName (L"CustomThreshold");

SetCategory (L"Image::Image Thresholding");

SetImage (L"CustomThreshold_16.png");

SetImageBig (L"CustomThreshold_48.png");

SetTip (L"Binarizes 8-bit images");

// Name Type pefault Tool-tip

AddInput (L"inImage", L"Image", L"", L"Input image")3

AddInput (L"inThreshold", L"Integer<0, 255>", L"128", L"Threshold value");
Addoutput (L"outImage", L"Image", L"output image" bH

}

// Computes output from input data
int Invoke() override

{

// Get data from the inputs
avl::Image inImage;

int inThreshold;

ReadInput(L"inImage", inImage);
ReadInput(L"inThreshold", inThreshold);

if (inImage.Type() != avl::PlainType::UInt8)
throw atl::DomaineError("only uint8 pixel type are supported."”);

// Get image properties
int height = inImage.Height(Q);

// Prepare output image in this same format as input
outImage.Reset(inImage, atl::NIL);

// Enumerate each row
for (int y = 0; y < height; ++y)
{
// Get row pointers
const atl::uint8* p = inImage.RowBegin<atl::uint8>(y);
const atl::uint8* e inImage.RowEnd<atl::uint8>(y);
atl::uint8* q = outImage.RowBegin<atl::uint8>(y);

// Loop over the pixel components
while (p < e)

(*q++) = (*p++) < inThreshold ? 0 : 255;
}

// Set output data
writeoutput(L"outImage", outImage);

// Continue program
return INVOKE_NORMAL ;
}
}

// Builds the filter factory
class RegisterUseroObjects

{

public:
RegisteruUserobjects()

// Remember to register every filter exported by the user filter library
RegisterFilter(CreateInstance<CustomThreshold>);

}

};

static RegisterUserObjects registerUserobjects;

}

Structure of User Filter Class

A user filter is a class derived from the uUserrilter class defined in uUserrFilter.h header file. when
creating a filter without state you have to override two methods:

o Define - defines the interface of the filter, including its name, category, inputs and outputs.
e Invoke - defines the routine that transforms inputs into outputs.

when creating a f7lter with state (storing information from previous invocations) the class is going to

https://docs.adaptive-vision.com/5.6/studio/programming_model/Filters.html

have some data fields and two additional methods have to be overridden:

e Init - initializes the state variables, invoked at the beginning of a Task parenting the instance of
the filter, may be invoked multiple times during filter instance Tifetime. Always remember to invoke
base type Init() method.

e Stop - deinitializes the state variables, including releasing of external and I/O resources (like
file handles or network connections), may not affect data on filter outputs, invoked at the end of a
Task parenting the filter instance (to pair every Init call).

o Release - releases output variables memory, invoked at the end of a Task macrofilters marked to
release memory.

when a user filter class is created it has to be registered. This is done in the RegisteruUserobjects
function which is defined at the bottom of the sample user filters' code. You do not need to call it
manually, it's called by Aurora Vvision Studio while loading filters from the .d11 file.

Structure of Define Method

Use the Define method to set the name, category, image (used as the icon of the filter) and tooltip for
your filter. A1l of this can be set by using proper Set... methods.

The Dpefine method should also contain a definition of the filter's external interface, which means:
inputs, outputs and diagnostic outputs. The external interface should be defined using AddInput, Addoutput
and Addpiagnosticoutput methods. These methods allow to define name, type and tooltip for every
input/output of filter. For inputs a definition of the default value is also possible.

Aurora Vision Studio uses a set of additional attributes for ports. To apply attribute on a port use
AddAttribute method. Example:

AddAttribute(L"ArraySync", L"inA inB");
List of attributes:

Attribute

Description Example Comment
Name P P
ArraySync Defines a set of L"inA inB" Informs that arrays in inA and inB require the same
VEY synchronized ports. TnA TN number of elements.
Defines user Tlevel " " only users with Advanced level will find this filter
UserLevel access to the filter. L"Advanced in Libraries tab.
UsageTips Defines additional LUsR s FITEer for This 1is instruction where this filter is needed
gD documentation text. creating a line." .
Filter can accept : :
Allowedsingleton singleton connections L"inA" K?ﬁ; cin gonnect 8 Sielle e @ ik wild e
on input Y @
pefines element of L"FilterName<variantName> Creates a FilterName with default element
FilterGroup ErerNarGn default ## Description for variantName. More detailed description in "Defining
9 [P " Filters Groups"
group
TGS Defines alternative L"DrawText DrawString when user types "DrawText" this filter will be in
9 names for this filter. PutText" result Tist.
CcustomHelpurl Defines alternative L"http:\\adaptive- when user press F1 in the Program Editor alternative
P URL for this filter. vision.com" help page will be opened.

Defining Filters Groups

Several filters can be grouped into a single group, which can be very helpful for user to change variant
of very similar operations.

To create filter group define attribute L"FilterGroup" for default filter with parameters.
L"FilterName<variantName> default ## Description for group"”. Notice "default" word. Text after "##"
defines the tooltip for whole group.

If default filter is defined you can add another filter using L"FilterGroup" with parameter
L"FilterName<Nextvariant>"

Example usage:

// befault filter FindCircle -> Find: Circle
AddAttribute(L"FilterGroup", L"Find<Circle> default ## Finds an object on the image");

// Second variant FindRectangle -> Find: Rectangle
AddAttribute(L"FiTlterGroup", L"Find<Rectangle>");

// Third variant FindPolygon -> Find: Polygon
AddAttribute(L"FilterGroup", L"Find<Polygon>");

As result a filter group Find will be created with three variants: Circle, Rectangle, Polygon.
Using custom user filter icons

Using methods SetImage and SetImageBig user can assign a custom icon for user filter. Filter icon must be
located in this same directory as output output user filter DLL file.

There are four types of 1icons:

https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Tasks
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Tasks
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Tasks

e Small Icon - icon with size 16x16 pixels used in Libraries tab, set by SetImage, name should end with
" 16"

e Medium Icon - icon of size 24x24 pixel, created automatically from Big Icon,

e Big Icon - icon of size 48x48 pixel, set by SetImageBig, name should end with "_48",

e Description Icon - icon of size 72x72 used in filter selection from group, name is created by
replacing "_48" from SetImageBig by "_D". For given SetImageBig as "custom_48.png" a name
"custom_D.png" will be generated.

Structure of Invoke Method
An Invoke method has to contain 3 elements:
1. Reading data from inputs

To read the value passed to the filter input, use the ReadInput method. This is a template method
supporting all Aurora Vision Studio data types. ReadInput method returns the value (by reference)
using its second parameter.

2. Computing output data from input data
It is the core part. Any computations can be done here
3. Writing data to outputs

Similarly to reading, there is a method writeoutput that should be used to set values returned from
filter on filter outputs.

Data types that don't contain blobs (i.e. 7nt, avil::Point2D, avl::Rectangle2D) can be simply returned
by passing the local variable to the writeoutput method. Output variables with blobs (i.e. avi::Image,
avl::Region) should be declared at least in a class scope.

class MyownFilter : public UserFilter

{
int Invoke()
{
int length;
// ... computing the length value...
writeoutput("outLength”, length);
}
/YT
}

A1l non-trivial data types 1like Image, Region or ByteBuffer should be defined as a filter class field.
This solution has two benefits:

1. Reduces performance overhead for creating new objects in each filter execution,
2. Assures that types which contains blobs are not released after the filter execution.

For the sake of clarity it is good habit to define all filter variables as class members.

class MyownFilter : public UserFilter
{
private:
// Non-trivial type data
avl::Image image;

int Invoke()

{
// ... computing image ...
writeoutput("outImage", image);
}

/] ...

}

Invoke has to return one of the four possible values:

o INVOKE_ERROR - when something went wrong and program cannot be continued.

o INVOKE_NORMAL - when everything is OK and the filter can be invoked again.

o INVOKE_LOOP - when everything is OK and the filter requests more iterations.

e INVOKE_END - when everything is OK and the filter requests to stop the current Toop.

For example the filter Readvideo returns INVOKE_LOOP whenever a new frame is successfully read and
INVOKE_END when there is the end. INVOKE_NORMAL 1is returned by filters that do not have any influence on
the current Toop continuation or exiting (for example ThresholdImage).

A1l filter outputs should be assigned by writeoutput before filters return status. Missing assigned may
result random data access in complex program structure. On INVOKE_END result filter should set up output
values as last iterations of filter.

In case of error also exceptions can be thrown. User atl]::DomaintError for signaling problems connected
with input data. A1l hardware problems should be signaled using at7::IoError. For more information please
read Error Handling

Using Arrays

User filters can process not only single data objects, but also arrays of them. In Aurora Vvision Studio,
arrays are represented by data types with suffix Array (i.e. IntegerArray, ImageArray, RegionArrayArray).
Multiple Array suffixes are used for multidimensional arrays. In C++ code of user filters, atl::Array<T>
container is used for storing objects in arrays:

https://docs.adaptive-vision.com/5.6/studio/programming_model/DataTypes.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Image.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/ByteBuffer.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageIO/ReadVideo.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/ErrorHandling.html

atl::Array< int > integers;
atl::Array< avl::Image > images;
atl::Array< atl::Array< avl::Region > > regions2Dim;

For more information about types from at7 and av7 namespaces, please refer the documentation of Aurora
vision Library.

Diagnostic Mode Execution and Diagnostic Outputs

User filters can have diagnostic outputs. Diagnostic outputs can be helpful during developing programs in
Aurora Vision Studio. The main purpose of this feature is to allow the user to view diagnostic data on the
Data Previews, but they can also participate in the data flow and can be connected to an input of any
filter. This type of connection is called a diagnostic connection and makes the destination filter to be
executed in the D7agnostic mode (filter will be invoked only in the D7agnostic mode of program execution).

when a program is executed in the Non-Diagnostic mode, values of the diagnostic outputs shouldn't be (for
performance purposes) computed by any filter. In user filters, you should use the IsDiagnosticMode()
method for conditional computation of the data generated by your filter for diagnostic outputs. If the
method returns True, execution is in the D7agnostic mode and values of the diagnostic outputs should be
computed, otherwise, the execution is in the Non-D7iagnostic mode and your filter shouldn't compute such
values.

Filter work Cancellation

Aurora Vvision Studio allows to stop execution of each filter during the time consuming computations. To
use this option function IsworkCancelled() can be used. If function returns value True the long
computation should be finished because user pressed the "Stop" button.

Using Dependent DLL

User filter Tibraries are often created as wrappers of third party libraries, e.g. of APIs for some
specific hardware. These Tibraries often come in the form of DLL files. For a user filter to work
properly, the other DLL files must be located in an accessible disk location at runtime, or the user gets
the error code 126, The specified module could not be found. MSDN documentation specifies possible options
in the article Dynamic-Link Library Search order. From the point of view of user filters in Aurora Vvision
Studio, the most typical option is the one related to changing the PATH environment variable - almost all
camera manufacturers follow this way. For local user filters it is also allowed to add dependent d11 in
the same directory as the user filter d11 directory.

ARSI NS 0 A8 T B SRl s Yl eo wat: G IR MRy PV d QIvEG D Mt B ERRl o IRl Gl Y. (Y RRIEIIES NAEI YIS

Vision Studio 5.6 Runtime\Filters\Deps_xb4, after which the user filter's dependent DLL fiTes can be

stored inside of qt.

Advanced Topics

Using the Full version of AVL

By default, user filters are based on Aurora vision Library Lite library, which is a free edition of
Aurora Vision Library Professional. It contains data types and basic functions from the 'full' edition of
Aurora Vision Library. Please refer to the documentation of Aurora Vvision Library Lite and Aurora Vvision
Library Professional to Tearn more about their features and capabilities.

If you have bought a license for the 'full' Aurora vision Library, you can use it in user filters instead
of the Lite edition. The following steps are required:

e In compiler settings of the project, add additional include directory $(AVL_PATH5_6)\incTude:

e In source code file, change including AVL_Lite.h to AVL.h.
Accessing Console from User Filter

It is possible to add messages to the console of Aurora Vision Studio from within the Invoke method.
Logging messages can be used for problems visualization, but also for debugging. To add the message, use
one of the following functions:

bool LogInfo (const atl::String& message);
bool Logwarning(const atl::String& message);
bool LogError (const atl::String& message);
bool LogFatal (const atl::String& message);

Generic User Filters

Generic filters are filters that do not have a strictly defined type of the data they process. Generic
filters have to be concretized with a data type before they can be used. There are many generic filters
provided with Aurora Vvision Studio (i.e. ArraySize) and user filters can be generic as well.

To create a generic user filter, you need to define one or more ports of the user filters as generic. In
the call of Addinput method the second parameter (data type) has to contain < 7 >. Example usage:

AddInput (“inArray", "<T>Array", , "Input array");

AddiInput ("inobject", "<T>", "", "Object of any type");

In the Invoke method of a user filter, the Get7ypeparam function can be used to resolve the data type that

https://docs.adaptive-vision.com/5.6/studio/user_interface/DiagnosticMode.html
https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-search-order
https://docs.adaptive-vision.com/5.6/studio/programming_model/GenericFilters.html
https://docs.adaptive-vision.com/5.6/studio/filters/ArrayBasics/ArraySize.html

the filter has been concretized with. once the data type is known, the data can be properly processed
using the 7f-else statement. Please see the example below.

atl::string type = GetTypeParam(); // Getting type of generic instantiation as string.
int arrayByteSize = -1;

if (type == "Integer")

atl::Array< int > ints = GetInputArray< int >("inArray");
arrayByteSize = ints.Size() * sizeof(int);

else if (type == "Image")
{
atl::Array< avs::Image > images = GetInputArray< avs::Image >("inArray");
arrayByteSize = 0;
for (int i = 0; i < dimages.Size(); ++i)
arrayByteSize += images[i].pitch * images[i].height;

Creating User Types 1in User Filters

when creating a User Filter add to the project an AVTYPE file with a user types description. The file
should contain type descriptions in a format the same 1like the one used for creating User Types in a
program. See Creating User Types. Sample user type description file:

enum PartType
{

Nut

Bolt

Screw

Hook
Fastener

}

struct Part

{

String Name
Real width
Real Height
Real Tolerance

}

In your C++ code declare structures/enums with the same field types, names and order. If you create an
enum then you can start using this type in your project instantly. For structures you must provide
ReadData and writeData functions overrides for serialization and deserialization.

In these functions you should serialize/deserialize all fields of your structure in the same order you
declared them in the type definition file.

To support structure Part from the previous example in your source code you should add:

Structure declaration:

struct Part

{

atl::String Name;
float width;
float Height;
float Tolerance;
}

Structure deserialization function:

void ReadData(atl::BinaryReader& reader, Part& outPart)
{

ReadData(reader, outPart.Name);

ReadData(reader, outPart.width);

ReadData(reader, outPart.Height);

ReadData(reader, outPart.Tolerance);

}
Structure serialization function:

void writebpata(atl::Binarywriter& writer, const Part& invalue)
{

writeData(writer, invalue.Name);

writeData(writer, invalue.width);

writeData(writer, invalue.Height);

writeData(writer, invalue.Tolerance);

}

Enum declaration:

https://docs.adaptive-vision.com/5.6/studio/extensibility/CreatingUserTypes.html

enum PartType
{

Nut,

Bolt,

screw,

Hook,
Fastener

}

It is not required for custom serialization / deserialization of enum types.

The file with user type definitions has to be registered. This is done in the RegisteruUserobjects class
constructor which is defined at the bottom of the user filter code. You need to add there a registration
of your file as RegisterTypeDefinitionFile("fileName.avtype"). The file name is a path to your type
definitions file. The path should be absolute or relative to the User Filter d11 file.

You can use types defined in a User Filter Tibrary in this User Filters library as well as in all other
modules of the project. If you want to use the same type in multiple User Filters libraries then you
should declare these types in each User Filters Tibrary.

The following Example Program: "User Filter With User Defined Types" demonstrates usage of User Types in
User Filters.

Troubleshooting and Examples

Upgrading User Filters to Newer Versions of Aurora Vision Studio

when upgrading project with User Filters to more recent version of Aurora Vision you should manually edit
the User Filter vcxproj file in your favorite text editor e.g. notepad. Make sure to close the solution
file in Microsoft visual Studio before performing the modifications. In this file you should change all
occurrences of AVS_PROFESSIONAL_SDKxx (where is xx is your current version of Aurora Vision) to

VS. 6, save your changes and rebuild the project.

After successful build you can use your User Filter Tlibrary in the new version of Aurora Vvision.

puring compilation you can receive some errors if you use in your code function which has changed its
interface. In such case, please refer the documentation and release notes to find out how the function was
changed in the current version.

Remarks

o If you get problems with PDB files being Tocked, kill the mspdbsrv.exe process using Windows Task
Manager. It is a known issue in Microsoft visual studio. You can also switch to use the Release
configuration instead.

e User filters can be debugged. See Debugging User Filters.

o A user filter Tibrary (in .d11 file) that has been built using SDK from one version of Aurora Vvision
studio is not always compatible with other versions. If you want to use the user filter library with a
different version, it may be required to rebuild the library.

o If you use Aurora vision Library ('full' edition) in user filters, Aurora Vvision Library and Aurora
Vision Studio should be in the same version.

e A solution of a user filter library can be generated with example filters. If you're a beginner in
writing your own filters, it's probably a good idea to study these examples.

e only compiling your library in the release configuration lets you use it on other computer units. You
cannot do so if you use a debug configuration.

Example: Image Acquisition from IDS Cameras

one of the most common uses of user filters is for communication with hardware, which does not (fully)
support the standard GenICam industrial interface. Aurora Vvision Studio comes with a ready example of such
a user filter - for image acquisition from cameras manufactured by the IDS company. You can use this
example as a reference when implementing support for your specific hardware.

The source code is Tocated in the directory:
%PUBLIC%\Documents\Aurora Vision Sstudio 5.6 Professional\Sources\UserFilters\IDS

Here is a list of the most important classes in the code:

¢ CameraManager - a singleton managing all connections with the IDS device drivers.

¢ IDSCamera - a manager of a single image acquisition stream. It will be shared by multiple filters
connected to the same device.

e« IDS_BaseClass - a common base class for all user filter classes.

. %p%_crabImage, IDS_GrabImage_withTimeout, IDS_StartAcquisition - the classes of individual user
ilters.

The CameraManager constructor checks if an appropriate camera vendor's d11 file is present in the system.
The user filter project Toads the library with the option of Delay-Loaded DLL turned on to correctly
handle the case when the file is missing.

Requirement: To use the user filters for IDS cameras you need to install IDS Software Suite, which can be
downloaded from IDS web page.

After the project is built in the appropriate win32/x64 configuration, you will get the (global) user
filters loaded to Aurora vision Studio automatically. They will appear in the Libraries tab of the
Toolbox, "User Filters" section.

https://docs.adaptive-vision.com/5.6/studio/extensibility/DebuggingUserFilters.html
https://docs.microsoft.com/en-us/cpp/build/reference/linker-support-for-delay-loaded-dlls
https://en.ids-imaging.com/downloads.html?choice=ueye

Example: Using PCL library in Aurora Vision Studio
This example shows how to use PCL in an user filter.

The source code is Tocated in the directory:
%PUBLIC%\Documents\Aurora Vision Studio 5.6 Professional\Sources\UserFilters\PCL

To run this example PCL Library must be installed and system PCL_ROOT must be defined.

Debugging User Filters

Debugging User Filters with Aurora Vvision Studio Running
To debug your user filters, follow the instructions below:

1. If the Microsoft visual Studio solution of your user filter library is not opened, open it manually.
For global user filters it is typically located in My Documents\Aurora Vision Studio
Professional\Sources\LibraryName, but can be located in any other Tocation that you have chosen while
creating the library. For local user filters, you can check the Tocation of the solution file in the
Project Explorer task pane.

2. Make sure that Aurora Vision Studio is not running.
Select Debug configuration.
Go to the project properties:

w MyOwnPFilter - Microsoft Visual Studic
File Edit View | Project | Build Debug Team Tools Test ReSh:
= | #3 - | 1 Retarget solution o

+
Solution Explorer " Add Class...
. g* Class Wizard... Ctrl+Shift+X
@ o,

Add Resource...
Search Solution Explg

3 Add Mew ltem...
fal Solution MyOW o\ 1 eyiting It Shift+ Alt+ A
I > El : 151 ||"|g M. i+ +
#5 New Filter

[E Show All Files

Unload Project

Rescan Solution

Add Reference...

t{;& Add Connected Service...
£} Set as StartUp Project
Build Customizations...
i Manage NuGet Packages...
A Properties
5. Go to Debugging section:
Configuration: |Debug ~ | Platform: |x64 ~ Configuration Manager...
4 Configuration Properties Debugger to launch:
Geﬁeral_ Local Windows Debugger >
Debugaging
VC++ Directories
b C/Ce+ Command C:\Program Files\Adaptive Vision\Adaptive Vision Studio 5.0 Professional\
> Linker Command Arguments
b Manifest Tool Working Directory $(ProjectDir)
I XML Document Generator Attach No
P Browse Information Debugger Type Native Only
> Build Events Environment
b Custom Build Step Merge Environment Yes
b Code Analysis SQL Debugging No
Amp Default Accelerator 'WARP software accelerator
Debugger Type
Specifies the debugger type to use. When set to Auto, the debugger type will be selected based on contents of the exe file
oK Cancel Apply

Set Command to the executable of Aurora Vision Studio.
Set Debugger Type to Native only.
Set a breakpoint in your code.

O 00 N O

Launch debugging by clicking F5.

10. Have your filter executed in Aurora Vision Studio. At this point it should get you into the debugging
session.

Debugging User Filters by attaching to Aurora Vvision Studio process

You can attach the Microsoft visual Studio debugger to a running process. Follow the instructions below:

1. Run Aurora Vision Studio and Toad your project.
2. Load solution of the User Filter in Microsoft Vvisual Studio.
3. From the Debug menu, choose Attach to Process.

w MyOwnPFilter - Microsoft Visual Studio
File Edit View Project Build | Debug | Team Tools Test ReSharper Analyze

e - |iﬁ"’ HIJ"| - Windows * Ho
Graphics 3
Solution Explorer v ix
- +w P Start Debuggin F5
ARETEIR b
o P Start Without Debugging Ctrl+F5
Search Solution Explorer (Ctrl+;) -
L D I e R @ Performance Profiler... Alt+F2
| ;\:IDH Mifi'ltwnFllter (1 project) & Attach to Process.. »
4 yOwnFilter
b =B References Other Debug Targets 3
P g External Dependencies Profiler * :::;
[MyOwnF!Iter.cpp ¥ Steplnto 11 a
b [B MyOwnFilter.h a
D Step Over F10 ‘

4. %q the Attach to Process dialog box, find AuroravisionsStudio.exe process from the Available Processes
ist.

5. In the Attach to box, make sure Native code option is selected.

Connection type: Default ~

Connection target: i Find...

Connection type information

The default connection lets you select processes on this computer or a remote computer running the Visual Studio Remote
Debugger (MSVSMON.EXE).

Attach to: Native code Select...

Available processes

Filter processes P~
Process ID Title Type 2~
AdaptiveVisionHelpServerexe 18772 Managed (v4.0.30319), x64
AdaptiveVisionHelpServerexe 6444 Managed (v4.0.30319), x64
AdaptiveVisionStudio.exe 15344 Adaptive Vision Studio 5.0 Professional - Program.. Managed (v4.0.30319), x64
ApplicationFrameHost.exe 3508 Debugging User Filters and 8 more pages - Micro.. x64
browser_broker.exe 14728 x64 I
chrome.exe 19224 x64 :
chrome.exe 14892 x64 |
chrome.exe 14868 xb4
chrome.exe 15028 x64
chrome.exe 11400 x64 o
T AR znne g
< >
] Show processes from all users Refresh
Attach Cancel

Press Attach button.
7. Set a breakpoint in your code.
Have your filter executed in Aurora Vvision studio. At this point it should get you into the debugging
session.
Debugging Tips
e User filters have access to the Console window of Aurora vision Studio. It can be helpful during
debugging user filters. To write on the Console, please use one of the functions below:

o bool LogInfo (const atl::String& message);
o bool Logwarning (const atl::String& message);

o bool LogError (const atl::String& message);

Functions are declared (indirectly) in the Userrilter.h header file that should be used in every file
with user filters source code.

e To write messages on the output_window of the Microsoft visual studio, please use standard
outputbDebugString function (declared in windows.h) .

Creating User Types

In Aurora Vision Studio it is possible for the user to create custom types of data. This can be especially
useful when it is needed to pass multiple parameters conveniently throughout your application or when
creating User Filters.

The user can define a structure with named fields of specified type as well as his own enumeration types
(depicting several fixed options).

For example, the user can define a structure which contains such parameters as: width, height, value and
position in a single place. Also, the user can define named program states by defining an enumeration type
with options: Start, Stop, Error, Pause, etc.

Usage

In an example project information such as: part name, part width, part height and its tolerance is needed
for checking product quality. A11 this data elements must be accessed during image analysis.

This problem can be solved without user defined types, but creating a lot of connections can make the
program structure too complex. The pictures below show a comparison between working with a user's
structure and passing multiple values as separate parameters.

1. PerformAnalysis

inHeight
inTolerance

|

11

2. StoreData J
inName

inTolerance

A solution with user types - fewer connections,
readable.

A solution without user types - more connections, less
readable.

Creating User Types in a Program

User types are created with a graphical editor available through the Project Explorer window.

| - > X
= Program

@I’-‘Iain

Use this icon to open the graphical editor.

Create Mew User Type ? *

. ® Structure

Type:
(O Enumeration

Name: | Person |

Module: |Prog'a'n v|
Fields: | Name Type Default Value
Name String Empty String
Sumame String Empty String
= O—

Defautt Value: 1]

ok | Cancel

Graphical user type editor.

Alternatively, you can save your project, open the main AVCODE file (e.g. with Notepad++) and at the
beginning of the file enter a type declaration:

struct Part

{

String Name
Real width
Real Height
Real Tolerance

3

Save your file and reload the project. Now the newly created type can be used as any other type in Aurora
Vvision Studio.

PE=EYy e« Ox QS
[= Program

@ Main

< [Structure] Part

Mame : String
Width: Real
Height : Real
Tolerance : Real

After reloading the project the custom made type is available in Aurora Vision Studio.

Also custom enumeration types can be added this way. To create a custom enumeration type add the code
below to the top of your AVCODE file.

enum PartType
{

Nut

Bolt

screw

Hook
Fastener

3

0. Formula
Add Input

outName = inType == PartType.Hook and

inType == PartType.Bolt ? 2.8 : 3.8

Add Output
Show/Hide Ports

custom enumeration types can be used 1ike other types.

Accessing Structure Fields

To access information contained in a user structure its fields must be expanded. The picture below shows
how to expand a type on an input of a macrofilter.

Macrofilter Inputs

Edit Macrofilter Input... inPart Tolerance
Remove Macrofilter Input

Move Macrofilter Input

Label Data Source...
Property Outputs Name
Copy Value Width
Export to AVDATA File... Height

Extract Global Parameter... Tolerance

Show in Current View

Show in New View

Create Formula for This Macrofilter Input...

User type fields expanded on a macrofilter's inputs.

User type objects can be created with the Copyobject filter.

4. CopyObject<Part>

-
Show/Hide Ports inObject Tolerance

User type fields expanded on the Copyobject input.

https://docs.adaptive-vision.com/5.6/studio/filters/Common/CopyObject.html
https://docs.adaptive-vision.com/5.6/studio/filters/Common/CopyObject.html

User defined types can also be accessed with formulas.

inPart Add Input
outArea = inPart.Width * inPart.Height
Add Qutput

outhrea

Show/Hide Ports

Computation using the user defined type.

Saving User Types

User defined types work in Aurora Vvision Studio, so filters such Saveobject, writeToString, writeToxmINode
or TcpIp_Writeobject can be used to store and transfer user data.

Related Program Examples

User defined types can be studied in the following Program Examples: Brick Destroy, User Defined Types,
User Filter with User Defined Types.

Zebra
Aurora’ Vision

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://docs.adaptive-vision.com/5.6/studio/filters/FileSystem/SaveObject.html
https://docs.adaptive-vision.com/5.6/studio/filters/FileSystem/WriteToString.html
https://docs.adaptive-vision.com/5.6/studio/filters/Xml/WriteToXmlNode.html
https://docs.adaptive-vision.com/5.6/studio/filters/TCPIP/TcpIp_WriteObject.html
https://docs.adaptive-vision.com/5.6/studio/examples/brick_destroy.html
https://www.adaptive-vision.com/

	Aurora Vision Studio 5.6
	Extensibility
	Creating User Filters
	Table of Contents
	Introduction
	Prerequisites
	User Filter Libraries Location
	Adding New Global User Filter Libraries
	Adding New Local User Filter Libraries
	Developing User Filters
	User Filter Project Configuration
	Basic User Filter Example
	Structure of User Filter Class
	Structure of Define Method
	Defining Filters Groups
	Using custom user filter icons
	Structure of Invoke Method
	Using Arrays
	Diagnostic Mode Execution and Diagnostic Outputs
	Filter Work Cancellation
	Using Dependent DLL
	Advanced Topics
	Using the Full Version of AVL
	Accessing Console from User Filter
	Generic User Filters
	Creating User Types in User Filters
	Troubleshooting and Examples
	Upgrading User Filters to Newer Versions of Aurora Vision Studio
	Remarks
	Example: Image Acquisition from IDS Cameras
	Example: Using PCL library in Aurora Vision Studio
	Debugging User Filters
	Debugging User Filters with Aurora Vision Studio Running
	Debugging User Filters by attaching to Aurora Vision Studio process
	Debugging Tips
	Creating User Types
	Usage
	Creating User Types in a Program
	Accessing Structure Fields
	Saving User Types
	Related Program Examples

