
Aurora Vision Studio Aurora Vision Studio 55.6.6

ExtensibilityExtensibility

Created: 9/25/2025

Product version: 5.6.1.79554

adaptive-vision.com

Table of content:

Creating User Filters

Debugging User Filters

Creating User Types

https://www.adaptive-vision.com

Creating User FiltersCreating User Filters

Note 1: Note 1: Creating user filters requires C/C++ programming skills.

Note 2: Note 2: With your own C/C++ code you can easily crash the entire application. We are not able to protect
against that.

Table of ContentsTable of Contents

1. Introduction

1. Prerequisites

2. User Filter Libraries Location

3. Adding New Global User Filter Libraries

4. Adding New Local User Filter Libraries

2. Developing User Filters

1. User Filter Project Configuration

2. Basic User Filter Example

3. Structure of User Filter Class

1. Structure of Define Method

2. Structure of Invoke Method

4. Using Arrays

5. Diagnostic Mode Execution and Diagnostic Outputs

6. Filter Work Cancellation

7. Using Dependent DLL

3. Advanced Topics

1. Using the Full Version of AVL

2. Accessing Console from User Filter

3. Generic User Filters

4. Creating User Types in User Filters

4. Troubleshooting and examples

1. Upgrading User Filters to Newer Versions of Aurora Vision Studio

2. Building x64 User Filters in Microsoft Visual Studio Express Edition

3. Remarks

4. Example: Image Acquisition from IDS Cameras

5. Example: Using PCL library in Aurora Vision Studio

IntroductionIntroduction

User filters are written in C/C++ and allow the advanced users to extend capabilities of Aurora Vision
Studio with virtually no constraints. They can be used to support a new camera model, to communicate with
external devices, to add application-specific image processing operations and more.

PrerequisitesPrerequisites

To create a user filter you will need:

an installed Microsoft Visual Studio 2015/2017/2019 for C++, Express Edition (free) or any higher
edition,

the environment variable AVS_PROFESSIONAL_SDK5_6 in your system (depending on the edition; a proper
value of the variable is set during the installation of Aurora Vision Studio),

C/C++ programming skills.

User filters are grouped in user filter libraries. Every user filter library is a single .dll file built
using Microsoft Visual Studio. It can contain one or more filters that can be used in programs developed
with Aurora Vision Studio.

User Filter Libraries LocationUser Filter Libraries Location

There are two types of user filter libraries:

GlobalGlobal 3 once created or imported to Aurora Vision Studio they can be used in all projects. The
filters from such libraries are visible in the Libraries tab of the Toolbox.

LocalLocal 3 belong to specific projects of Aurora Vision Studio. The filters from such libraries are
visible only in the project that the library has been added to.

A solution (.sln file) of a global user filter library can be located in any location on your hard disk,
but the default and recommended location is Documents\Aurora Vision Studio 5.6
Professional\Sources\UserFilters (the exact path can vary depending on the version of Aurora Vision
Studio). The output .dll file built using Microsoft Visual Studio and containing global user filters has
to be located in Documents\Aurora Vision Studio 5.6 Professional\Filters\x64 (this time the exact path
depends on the version and the edition) and this path is set in the initial settings of the generated
Microsoft Visual Studio project. For global user filter libraries, this path must not be changed because
Aurora Vision Studio monitors this directory for changes of the .dll files. The Global User Filter .dll
file for Aurora Vision Executor has to be located in Documents\Aurora Vision Studio 5.6
Runtime\Filters\x64 (again, the exact path depends on the version and edition). For 32 bit edition the
last subdirectory should be changed from x64 to Win32. The Local User Filter .dll file for Aurora Vision
Executor has to be located in path configured in the User Filter properties. You can modify this path by
editing user filters library properties in Project Explorer.

A local user filter library is a part of the project developed with Aurora Vision Studio and both source
and output .dll files can be located anywhere on the hard drive. Use the Project Explorer task panel to

check or modify paths to the output .dll and Microsoft Visual Studio solution files of the user filter
library. The changes of the output .dll file are monitored by Aurora Vision Studio irrespectively of the
file location. It's a good practice to keep the local user filter library sources (and the output .dll)
relatively to the location of the developed project, for example in a subdirectory of the project.

Adding New Global User Filter LibrariesAdding New Global User Filter Libraries

To add a new user filter library, start with File » Add/Modify Global User Filters » New Global User
Filter Library....

The other option is to use Create New Local User Filter Library button from Project Explorer panel.

A dialog box will appear where you should choose:

name for the new library,

type of the library: local (available in current project only) or global (available in all projects),

location of the solution directory,

version of Microsoft Visual Studio (2015, 2017 or 2019),

whether Microsoft Visual Studio should be opened automatically,

whether the code of example user filters should be added to the solution - good idea for users with
less experience with user filters programming.

If you choose Microsoft Visual Studio to be opened, you can build this solution instantly. A new library
of filters will be created and after a few seconds loaded to Aurora Vision Studio. Switch back to Aurora
Vision Studio to see the new filters in:

Appropriate categories of Libraries tab (global user filters, category in Libraries tab is based on
the category set in filter code)

Project Explorer (local user filters)

You can work simultaneously in both Microsoft Visual Studio and Aurora Vision Studio. Any time the C++
code is built, the filters will get reloaded. Just re-run your program in Aurora Vision Studio to see what
has changed.

If you do not see your filters in the above-mentioned locations, make sure that they have been compiled
correctly in an architecture compatible with your Aurora Vision Studio architecture: x86 (Win32) or x64.

Adding New Local User Filter LibrariesAdding New Local User Filter Libraries

To add a new local user filter use the "Create New Local User Filter Library.." button in the Project
Explorer panel as on the image below:

Developing User FiltersDeveloping User Filters

User Filter Project ConfigurationUser Filter Project Configuration

User filter project files (.sln and .vcproj) are generated by Aurora Vision Studio during adding new user
filter library.

The settings of user filter project are gathered in .props file available in props subdirectory of the
Aurora Vision Studio SDK (environment variable AVS_PROFESSIONAL_SDK5_6), typically C:\Program Files\Aurora
Vision\Aurora Vision Studio 5.6 Professional\SDK\props.

If you want to configure the existing project to be a valid user filter library, please use the proper
.props file (file with v140 suffix is dedicated for Microsoft Visual Studio 2015, v141 for 2017 and v142
for 2019).

Basic User Filter ExampleBasic User Filter Example

Example below shows whole source code for basic user filter. In this example filter is making a simple
threshold operation on an 8-bit image.

#include "UserFilter.h"

#include "AVL_Lite.h"

#include "UserFilterLibrary.hxx"

namespace avs

{

 // Example image processing filter

 class CustomThreshold : public UserFilter

 {

 private:

 // Non-trivial outputs must be defined as a filed to retain data after filter execution.

 avl::Image outImage;

 public:

 // Defines the inputs, the outputs and the filter metadata

 void Define() override

 {

 SetName (L"CustomThreshold");

 SetCategory (L"Image::Image Thresholding");

 SetImage (L"CustomThreshold_16.png");

 SetImageBig (L"CustomThreshold_48.png");

 SetTip (L"Binarizes 8-bit images");

 // Name Type Default Tool-tip

 AddInput (L"inImage", L"Image", L"", L"Input image");

 AddInput (L"inThreshold", L"Integer<0, 255>", L"128", L"Threshold value");

 AddOutput (L"outImage", L"Image", L"Output image");

 }

 // Computes output from input data

 int Invoke() override

 {

 // Get data from the inputs

 avl::Image inImage;

 int inThreshold;

 ReadInput(L"inImage", inImage);

 ReadInput(L"inThreshold", inThreshold);

 if (inImage.Type() != avl::PlainType::UInt8)

 throw atl::DomainError("Only uint8 pixel type are supported.");

 // Get image properties

 int height = inImage.Height();

 // Prepare output image in this same format as input

 outImage.Reset(inImage, atl::NIL);

 // Enumerate each row

 for (int y = 0; y < height; ++y)

 {

 // Get row pointers

 const atl::uint8* p = inImage.RowBegin<atl::uint8>(y);

 const atl::uint8* e = inImage.RowEnd<atl::uint8>(y);

 atl::uint8* q = outImage.RowBegin<atl::uint8>(y);

 // Loop over the pixel components

 while (p < e)

 {

 (*q++) = (*p++) < inThreshold ? 0 : 255;

 }

 }

 // Set output data

 WriteOutput(L"outImage", outImage);

 // Continue program

 return INVOKE_NORMAL;

 }

 };

 // Builds the filter factory

 class RegisterUserObjects

 {

 public:

 RegisterUserObjects()

 {

 // Remember to register every filter exported by the user filter library

 RegisterFilter(CreateInstance<CustomThreshold>);

 }

 };

 static RegisterUserObjects registerUserObjects;

}

Structure of User Filter ClassStructure of User Filter Class

A user filter is a class derived from the UserFilter class defined in UserFilter.h header file. When
creating a filter without state you have to override two methods:

DefineDefine 3 defines the interface of the filter, including its name, category, inputs and outputs.

InvokeInvoke 3 defines the routine that transforms inputs into outputs.

When creating a filter with state (storing information from previous invocations) the class is going to

https://docs.adaptive-vision.com/5.6/studio/programming_model/Filters.html

have some data fields and two additional methods have to be overridden:

InitInit 3 initializes the state variables, invoked at the beginning of a Task parenting the instance of
the filter, may be invoked multiple times during filter instance lifetime. Always remember to invoke
base type Init()Init() method.

StopStop 3 deinitializes the state variables, including releasing of external and I/O resources (like
file handles or network connections), may not affect data on filter outputs, invoked at the end of a
Task parenting the filter instance (to pair every InitInit call).

ReleaseRelease 3 releases output variables memory, invoked at the end of a Task macrofilters marked to
release memory.

When a user filter class is created it has to be registered. This is done in the RegisterUserObjects
function which is defined at the bottom of the sample user filters' code. You do not need to call it
manually, it's called by Aurora Vision Studio while loading filters from the .dll file.

Structure of Structure of DefineDefine Method Method

Use the Define method to set the name, category, image (used as the icon of the filter) and tooltip for
your filter. All of this can be set by using proper Set... methods.

The Define method should also contain a definition of the filter's external interface, which means:
inputs, outputs and diagnostic outputs. The external interface should be defined using AddInput, AddOutput
and AddDiagnosticOutput methods. These methods allow to define name, type and tooltip for every
input/output of filter. For inputs a definition of the default value is also possible.

Aurora Vision Studio uses a set of additional attributes for ports. To apply attribute on a port use
AddAttribute method. Example:

AddAttribute(L"ArraySync", L"inA inB");

List of attributes:

Defining Filters GroupsDefining Filters Groups

Several filters can be grouped into a single group, which can be very helpful for user to change variant
of very similar operations.

To create filter group define attribute L"FilterGroup" for default filter with parameters.
L"FilterName<VariantName> default ## Description for group"L"FilterName<VariantName> default ## Description for group". Notice "default" word. Text after "##"
defines the tooltip for whole group.

If default filter is defined you can add another filter using L"FilterGroup" with parameter
L"FilterName<NextVariant>"L"FilterName<NextVariant>"

Example usage:

// Default filter FindCircle -> Find: Circle

AddAttribute(L"FilterGroup", L"Find<Circle> default ## Finds an object on the image");

...

// Second variant FindRectangle -> Find: Rectangle

AddAttribute(L"FilterGroup", L"Find<Rectangle>");

...

// Third variant FindPolygon -> Find: Polygon

AddAttribute(L"FilterGroup", L"Find<Polygon>");

...

As result a filter group Find will be created with three variants: Circle, Rectangle, Polygon.

Using custom user filter iconsUsing custom user filter icons

Using methods SetImage and SetImageBig user can assign a custom icon for user filter. Filter icon must be
located in this same directory as output output user filter DLL file.

There are four types of icons:

AttributeAttribute
NameName

DescriptionDescription ExampleExample CommentComment

ArraySync
Defines a set of
synchronized ports. L"inA inB"

Informs that arrays in inA and inB require the same
number of elements.

UserLevel
Defines user level
access to the filter. L"Advanced"

Only users with Advanced level will find this filter
in Libraries tab.

UsageTips
Defines additional
documentation text.

L"Use this filter for

creating a line."
This is instruction where this filter is needed.

AllowedSingleton
Filter can accept
singleton connections
on input

L"inA"
User can connect a single value to inA which has
Array type.

FilterGroup
Defines element of
filter group.

L"FilterName<VariantName>

default ## Description for

group"

Creates a FilterName with default element
VariantName. More detailed description in "Defining
Filters Groups"

Tags
Defines alternative
names for this filter.

L"DrawText DrawString

PutText"
When user types "DrawText" this filter will be in
result list.

CustomHelpUrl
Defines alternative
URL for this filter.

L"http:\\adaptive-

vision.com"
When user press F1 in the Program Editor alternative
help page will be opened.

https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Tasks
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Tasks
https://docs.adaptive-vision.com/5.6/studio/programming_model/Macrofilters.html#Tasks

Small IconSmall Icon - icon with size 16x16 pixels used in Libraries tab, set by SetImage, name should end with
"_16"

Medium IconMedium Icon - icon of size 24x24 pixel, created automatically from Big Icon,

Big IconBig Icon - icon of size 48x48 pixel, set by SetImageBig, name should end with "_48",

Description IconDescription Icon - icon of size 72x72 used in filter selection from group, name is created by
replacing "_48" from SetImageBig by "_D". For given SetImageBig as "custom_48.png" a name
"custom_D.png" will be generated.

Structure of Structure of InvokeInvoke Method Method

An Invoke method has to contain 3 elements:

1. Reading data from inputsReading data from inputs

To read the value passed to the filter input, use the ReadInput method. This is a template method
supporting all Aurora Vision Studio data types. ReadInput method returns the value (by reference)
using its second parameter.

2. Computing output data from input dataComputing output data from input data

It is the core part. Any computations can be done here

3. Writing data to outputsWriting data to outputs

Similarly to reading, there is a method WriteOutput that should be used to set values returned from
filter on filter outputs.

Data types that don't contain blobs (i.e. int, avl::Point2D, avl::Rectangle2D) can be simply returned
by passing the local variable to the WriteOutput method. Output variables with blobs (i.e. avl::Image,
avl::Region) should be declared at least in a class scope.

 class MyOwnFilter : public UserFilter

 {

 int Invoke()

 {

 int length;

 // ... computing the length value...

 WriteOutput("outLength", length);

 }

 // ...

 }

All non-trivial data types like Image, Region or ByteBuffer should be defined as a filter class field.

This solution has two benefits:

1. Reduces performance overhead for creating new objects in each filter execution,

2. Assures that types which contains blobs are not released after the filter execution.

For the sake of clarity it is good habit to define all filter variables as class members.

 class MyOwnFilter : public UserFilter

 {

 private:

 // Non-trivial type data

 avl::Image image;

 int Invoke()

 {

 // ... computing image ...

 WriteOutput("outImage", image);

 }

 // ...

 }

Invoke has to return one of the four possible values:

INVOKE_ERRORINVOKE_ERROR - when something went wrong and program cannot be continued.

INVOKE_NORMALINVOKE_NORMAL - when everything is OK and the filter can be invoked again.

INVOKE_LOOPINVOKE_LOOP - when everything is OK and the filter requests more iterations.

INVOKE_ENDINVOKE_END - when everything is OK and the filter requests to stop the current loop.

For example the filter ReadVideo returns INVOKE_LOOPINVOKE_LOOP whenever a new frame is successfully read and
INVOKE_ENDINVOKE_END when there is the end. INVOKE_NORMALINVOKE_NORMAL is returned by filters that do not have any influence on
the current loop continuation or exiting (for example ThresholdImage).

All filter outputs should be assigned by WriteOutput before filters return status. Missing assigned may
result random data access in complex program structure. On INVOKE_END result filter should set up output
values as last iterations of filter.

In case of error also exceptions can be thrown. User atl::DomainError for signaling problems connected
with input data. All hardware problems should be signaled using atl::IoError. For more information please
read Error Handling

Using ArraysUsing Arrays

User filters can process not only single data objects, but also arrays of them. In Aurora Vision Studio,
arrays are represented by data types with suffix Array (i.e. IntegerArray, ImageArray, RegionArrayArray).
Multiple Array suffixes are used for multidimensional arrays. In C++ code of user filters, atl::Array<T>
container is used for storing objects in arrays:

https://docs.adaptive-vision.com/5.6/studio/programming_model/DataTypes.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Image.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/Region.html
https://docs.adaptive-vision.com/5.6/studio/datatypes/ByteBuffer.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageIO/ReadVideo.html
https://docs.adaptive-vision.com/5.6/studio/filters/ImageThresholding/ThresholdImage.html
https://docs.adaptive-vision.com/5.6/studio/programming_model/ErrorHandling.html

atl::Array< int > integers;

atl::Array< avl::Image > images;

atl::Array< atl::Array< avl::Region > > regions2Dim;

For more information about types from atl and avl namespaces, please refer the documentation of Aurora
Vision Library.

Diagnostic Mode Execution and Diagnostic OutputsDiagnostic Mode Execution and Diagnostic Outputs

User filters can have diagnostic outputs. Diagnostic outputs can be helpful during developing programs in
Aurora Vision Studio. The main purpose of this feature is to allow the user to view diagnostic data on the
Data Previews, but they can also participate in the data flow and can be connected to an input of any
filter. This type of connection is called a diagnostic connection and makes the destination filter to be
executed in the Diagnostic mode (filter will be invoked only in the Diagnostic mode of program execution).

When a program is executed in the Non-Diagnostic mode, values of the diagnostic outputs shouldn't be (for
performance purposes) computed by any filter. In user filters, you should use the IsDiagnosticMode()IsDiagnosticMode()
method for conditional computation of the data generated by your filter for diagnostic outputs. If the
method returns True, execution is in the Diagnostic mode and values of the diagnostic outputs should be
computed, otherwise, the execution is in the Non-Diagnostic mode and your filter shouldn't compute such
values.

Filter Work CancellationFilter Work Cancellation

Aurora Vision Studio allows to stop execution of each filter during the time consuming computations. To
use this option function IsWorkCancelled()IsWorkCancelled() can be used. If function returns value True the long
computation should be finished because user pressed the "Stop" button.

Using Dependent DLLUsing Dependent DLL

User filter libraries are often created as wrappers of third party libraries, e.g. of APIs for some
specific hardware. These libraries often come in the form of DLL files. For a user filter to work
properly, the other DLL files must be located in an accessible disk location at runtime, or the user gets
the error code 126, The specified module could not be found. MSDN documentation specifies possible options
in the article Dynamic-Link Library Search Order. From the point of view of user filters in Aurora Vision
Studio, the most typical option is the one related to changing the PATH environment variable 3 almost all
camera manufacturers follow this way. For local user filters it is also allowed to add dependent dll in
the same directory as the user filter dll directory.

Alternatively, it is possible to create a new directory for a global user filter library: Documents\Aurora
Vision Studio 5.6 Runtime\Filters\Deps_x64, after which the user filter's dependent DLL files can be
stored inside of it.

Advanced TopicsAdvanced Topics

Using the Full Version of AVLUsing the Full Version of AVL

By default, user filters are based on Aurora Vision Library Lite library, which is a free edition of
Aurora Vision Library Professional. It contains data types and basic functions from the 'full' edition of
Aurora Vision Library. Please refer to the documentation of Aurora Vision Library Lite and Aurora Vision
Library Professional to learn more about their features and capabilities.

If you have bought a license for the 'full' Aurora Vision Library, you can use it in user filters instead
of the Lite edition. The following steps are required:

In compiler settings of the project, add additional include directory $(AVL_PATH5_6)\include
(Configuration Properties | C/C++ | General | Additional Include Directories).

In linker settings of the project, add new additional library directory $(AVL_PATH5_6)\lib\$(Platform)
(Configuration Properties | Linker | General | Additional Library Directories).

In linker settings of the project, replace AVL_Lite.lib additional dependency with AVL.lib
(Configuration Properties | Linker | Input | Additional Dependencies).

In source code file, change including AVL_Lite.h to AVL.h.

Accessing Console from User FilterAccessing Console from User Filter

It is possible to add messages to the console of Aurora Vision Studio from within the Invoke method.
Logging messages can be used for problems visualization, but also for debugging. To add the message, use
one of the following functions:

bool LogInfo (const atl::String& message);

bool LogWarning(const atl::String& message);

bool LogError (const atl::String& message);

bool LogFatal (const atl::String& message);

Generic User FiltersGeneric User Filters

Generic filters are filters that do not have a strictly defined type of the data they process. Generic
filters have to be concretized with a data type before they can be used. There are many generic filters
provided with Aurora Vision Studio (i.e. ArraySize) and user filters can be generic as well.

To create a generic user filter, you need to define one or more ports of the user filters as generic. In
the call of AddInput method the second parameter (data type) has to contain < T >. Example usage:

AddInput ("inArray", "<T>Array", "", "Input array");

AddInput ("inObject", "<T>", "", "Object of any type");

In the Invoke method of a user filter, the GetTypeParam function can be used to resolve the data type that

https://docs.adaptive-vision.com/5.6/studio/user_interface/DiagnosticMode.html
https://docs.microsoft.com/en-us/windows/desktop/dlls/dynamic-link-library-search-order
https://docs.adaptive-vision.com/5.6/studio/programming_model/GenericFilters.html
https://docs.adaptive-vision.com/5.6/studio/filters/ArrayBasics/ArraySize.html

the filter has been concretized with. Once the data type is known, the data can be properly processed
using the if-else statement. Please see the example below.

atl::String type = GetTypeParam(); // Getting type of generic instantiation as string.

int arrayByteSize = -1;

if (type == "Integer")

{

 atl::Array< int > ints = GetInputArray< int >("inArray");

 arrayByteSize = ints.Size() * sizeof(int);

}

else if (type == "Image")

{

 atl::Array< avs::Image > images = GetInputArray< avs::Image >("inArray");

 arrayByteSize = 0;

 for (int i = 0; i < images.Size(); ++i)

 arrayByteSize += images[i].pitch * images[i].height;

}

Creating User Types in User FiltersCreating User Types in User Filters

When creating a User Filter add to the project an AVTYPE file with a user types description. The file
should contain type descriptions in a format the same like the one used for creating User Types in a
program. See Creating User Types. Sample user type description file:

enum PartType

{

 Nut

 Bolt

 Screw

 Hook

 Fastener

}

struct Part

{

 String Name

 Real Width

 Real Height

 Real Tolerance

}

In your C++ code declare structures/enums with the same field types, names and order. If you create an
enum then you can start using this type in your project instantly. For structures you must provide
ReadData and WriteData functions overrides for serialization and deserialization.

In these functions you should serialize/deserialize all fields of your structure in the same order you
declared them in the type definition file.

To support structure Part from the previous example in your source code you should add:

Structure declaration:

struct Part

{

 atl::String Name;

 float Width;

 float Height;

 float Tolerance;

};

Structure deserialization function:

void ReadData(atl::BinaryReader& reader, Part& outPart)

{

 ReadData(reader, outPart.Name);

 ReadData(reader, outPart.Width);

 ReadData(reader, outPart.Height);

 ReadData(reader, outPart.Tolerance);

}

Structure serialization function:

void WriteData(atl::BinaryWriter& writer, const Part& inValue)

{

 WriteData(writer, inValue.Name);

 WriteData(writer, inValue.Width);

 WriteData(writer, inValue.Height);

 WriteData(writer, inValue.Tolerance);

}

Enum declaration:

https://docs.adaptive-vision.com/5.6/studio/extensibility/CreatingUserTypes.html

enum PartType

{

 Nut,

 Bolt,

 Screw,

 Hook,

 Fastener

};

It is not required for custom serialization / deserialization of enum types.

The file with user type definitions has to be registered. This is done in the RegisterUserObjects class
constructor which is defined at the bottom of the user filter code. You need to add there a registration
of your file as RegisterTypeDefinitionFile("fileName.avtype"). The file name is a path to your type
definitions file. The path should be absolute or relative to the User Filter dll file.

You can use types defined in a User Filter library in this User Filters library as well as in all other
modules of the project. If you want to use the same type in multiple User Filters libraries then you
should declare these types in each User Filters library.

The following Example Program: "User Filter With User Defined Types" demonstrates usage of User Types in
User Filters.

Troubleshooting and ExamplesTroubleshooting and Examples

Upgrading User Filters to Newer Versions of Aurora Vision StudioUpgrading User Filters to Newer Versions of Aurora Vision Studio

When upgrading project with User Filters to more recent version of Aurora Vision you should manually edit
the User Filter vcxproj file in your favorite text editor e.g. notepad. Make sure to close the solution
file in Microsoft Visual Studio before performing the modifications. In this file you should change all
occurrences of AVS_PROFESSIONAL_SDKxx (where is xx is your current version of Aurora Vision) to
AVS_PROFESSIONAL_SDK5_6, save your changes and rebuild the project.

After successful build you can use your User Filter library in the new version of Aurora Vision.

During compilation you can receive some errors if you use in your code function which has changed its
interface. In such case, please refer the documentation and release notes to find out how the function was
changed in the current version.

RemarksRemarks

If you get problems with PDB files being locked, kill the mspdbsrv.exe process using Windows Task
Manager. It is a known issue in Microsoft Visual Studio. You can also switch to use the Release
configuration instead.

User filters can be debugged. See Debugging User Filters.

A user filter library (in .dll file) that has been built using SDK from one version of Aurora Vision
Studio is not always compatible with other versions. If you want to use the user filter library with a
different version, it may be required to rebuild the library.

If you use Aurora Vision Library ('full' edition) in user filters, Aurora Vision Library and Aurora
Vision Studio should be in the same version.

A solution of a user filter library can be generated with example filters. If you're a beginner in
writing your own filters, it's probably a good idea to study these examples.

Only compiling your library in the release configuration lets you use it on other computer units. You
cannot do so if you use a debug configuration.

Example: Image Acquisition from IDS CamerasExample: Image Acquisition from IDS Cameras

One of the most common uses of user filters is for communication with hardware, which does not (fully)
support the standard GenICam industrial interface. Aurora Vision Studio comes with a ready example of such
a user filter 3 for image acquisition from cameras manufactured by the IDS company. You can use this
example as a reference when implementing support for your specific hardware.

The source code is located in the directory:

%PUBLIC%\Documents\Aurora Vision Studio 5.6 Professional\Sources\UserFilters\IDS

Here is a list of the most important classes in the code:

CameraManagerCameraManager 3 a singleton managing all connections with the IDS device drivers.

IDSCameraIDSCamera 3 a manager of a single image acquisition stream. It will be shared by multiple filters
connected to the same device.

IDS_BaseClassIDS_BaseClass 3 a common base class for all user filter classes.

IDS_GrabImageIDS_GrabImage, IDS_GrabImage_WithTimeoutIDS_GrabImage_WithTimeout, IDS_StartAcquisitionIDS_StartAcquisition 3 the classes of individual user
filters.

The CameraManager constructor checks if an appropriate camera vendor's dll file is present in the system.
The user filter project loads the library with the option of Delay-Loaded DLL turned on to correctly
handle the case when the file is missing.

Requirement: To use the user filters for IDS cameras you need to install IDS Software Suite, which can be
downloaded from IDS web page.

After the project is built in the appropriate Win32/x64 configuration, you will get the (global) user
filters loaded to Aurora Vision Studio automatically. They will appear in the Libraries tab of the
Toolbox, "User Filters" section.

https://docs.adaptive-vision.com/5.6/studio/extensibility/DebuggingUserFilters.html
https://docs.microsoft.com/en-us/cpp/build/reference/linker-support-for-delay-loaded-dlls
https://en.ids-imaging.com/downloads.html?choice=ueye

Example: Using PCL library in Aurora Vision StudioExample: Using PCL library in Aurora Vision Studio

This example shows how to use PCL in an user filter.

The source code is located in the directory:

%PUBLIC%\Documents\Aurora Vision Studio 5.6 Professional\Sources\UserFilters\PCL

To run this example PCL Library must be installed and system PCL_ROOT must be defined.

Debugging User FiltersDebugging User Filters

Debugging User Filters with Aurora Vision Studio RunningDebugging User Filters with Aurora Vision Studio Running

To debug your user filters, follow the instructions below:

1. If the Microsoft Visual Studio solution of your user filter library is not opened, open it manually.
For global user filters it is typically located in My Documents\Aurora Vision Studio
Professional\Sources\LibraryName, but can be located in any other location that you have chosen while
creating the library. For local user filters, you can check the location of the solution file in the
Project Explorer task pane.

2. Make sure that Aurora Vision Studio is not running.

3. Select Debug configuration.

4. Go to the project properties:

5. Go to Debugging section:

6. Set Command to the executable of Aurora Vision Studio.

7. Set Debugger Type to Native Only.

8. Set a breakpoint in your code.

9. Launch debugging by clicking F5.

10. Have your filter executed in Aurora Vision Studio. At this point it should get you into the debugging
session.

Debugging User Filters by attaching to Aurora Vision Studio processDebugging User Filters by attaching to Aurora Vision Studio process

You can attach the Microsoft Visual Studio debugger to a running process. Follow the instructions below:

1. Run Aurora Vision Studio and load your project.

2. Load solution of the User Filter in Microsoft Visual Studio.

3. From the Debug menu, choose Attach to Process.

4. In the Attach to Process dialog box, find AuroraVisionStudio.exe process from the Available Processes
list.

5. In the Attach to box, make sure Native code option is selected.

6. Press Attach button.

7. Set a breakpoint in your code.

8. Have your filter executed in Aurora Vision Studio. At this point it should get you into the debugging
session.

Debugging TipsDebugging Tips

User filters have access to the Console window of Aurora Vision Studio. It can be helpful during
debugging user filters. To write on the Console, please use one of the functions below:

bool LogInfo (const atl::String& message);

bool LogWarning (const atl::String& message);

bool LogError (const atl::String& message);

Functions are declared (indirectly) in the UserFilter.h header file that should be used in every file
with user filters source code.

To write messages on the Output window of the Microsoft Visual Studio, please use standard
OutputDebugString function (declared in Windows.h).

Creating User TypesCreating User Types

In Aurora Vision Studio it is possible for the user to create custom types of data. This can be especially
useful when it is needed to pass multiple parameters conveniently throughout your application or when
creating User Filters.

The user can define a structure with named fields of specified type as well as his own enumeration types
(depicting several fixed options).

For example, the user can define a structure which contains such parameters as: width, height, value and
position in a single place. Also, the user can define named program states by defining an enumeration type
with options: Start, Stop, Error, Pause, etc.

UsageUsage

In an example project information such as: part name, part width, part height and its tolerance is needed
for checking product quality. All this data elements must be accessed during image analysis.

This problem can be solved without user defined types, but creating a lot of connections can make the
program structure too complex. The pictures below show a comparison between working with a user's
structure and passing multiple values as separate parameters.

Creating User Types in a ProgramCreating User Types in a Program

User types are created with a graphical editor available through the Project Explorer window.

Use this icon to open the graphical editor.

Graphical user type editor.

Alternatively, you can save your project, open the main AVCODE file (e.g. with Notepad++) and at the
beginning of the file enter a type declaration:

A solution without user types 3 more connections, less
readable.

A solution with user types 3 fewer connections, more
readable.

struct Part

{

 String Name

 Real Width

 Real Height

 Real Tolerance

}

Save your file and reload the project. Now the newly created type can be used as any other type in Aurora
Vision Studio.

After reloading the project the custom made type is available in Aurora Vision Studio.

Also custom enumeration types can be added this way. To create a custom enumeration type add the code
below to the top of your AVCODE file.

enum PartType

{

 Nut

 Bolt

 Screw

 Hook

 Fastener

}

Custom enumeration types can be used like other types.

Accessing Structure FieldsAccessing Structure Fields

To access information contained in a user structure its fields must be expanded. The picture below shows
how to expand a type on an input of a macrofilter.

User type fields expanded on a macrofilter's inputs.

User type objects can be created with the CopyObject filter.

User type fields expanded on the CopyObject input.

https://docs.adaptive-vision.com/5.6/studio/filters/Common/CopyObject.html
https://docs.adaptive-vision.com/5.6/studio/filters/Common/CopyObject.html

User defined types can also be accessed with formulas.

Computation using the user defined type.

Saving User TypesSaving User Types

User defined types work in Aurora Vision Studio, so filters such SaveObject, WriteToString, WriteToXmlNode
or TcpIp_WriteObject can be used to store and transfer user data.

Related Program ExamplesRelated Program Examples

User defined types can be studied in the following Program Examples: Brick Destroy, User Defined Types,
User Filter With User Defined Types.

This article is valid for version 5.6.1

©2007-2025 Aurora Vision

https://docs.adaptive-vision.com/5.6/studio/filters/FileSystem/SaveObject.html
https://docs.adaptive-vision.com/5.6/studio/filters/FileSystem/WriteToString.html
https://docs.adaptive-vision.com/5.6/studio/filters/Xml/WriteToXmlNode.html
https://docs.adaptive-vision.com/5.6/studio/filters/TCPIP/TcpIp_WriteObject.html
https://docs.adaptive-vision.com/5.6/studio/examples/brick_destroy.html
https://www.adaptive-vision.com/

	Aurora Vision Studio 5.6
	Extensibility
	Creating User Filters
	Table of Contents
	Introduction
	Prerequisites
	User Filter Libraries Location
	Adding New Global User Filter Libraries
	Adding New Local User Filter Libraries
	Developing User Filters
	User Filter Project Configuration
	Basic User Filter Example
	Structure of User Filter Class
	Structure of Define Method
	Defining Filters Groups
	Using custom user filter icons
	Structure of Invoke Method
	Using Arrays
	Diagnostic Mode Execution and Diagnostic Outputs
	Filter Work Cancellation
	Using Dependent DLL
	Advanced Topics
	Using the Full Version of AVL
	Accessing Console from User Filter
	Generic User Filters
	Creating User Types in User Filters
	Troubleshooting and Examples
	Upgrading User Filters to Newer Versions of Aurora Vision Studio
	Remarks
	Example: Image Acquisition from IDS Cameras
	Example: Using PCL library in Aurora Vision Studio
	Debugging User Filters
	Debugging User Filters with Aurora Vision Studio Running
	Debugging User Filters by attaching to Aurora Vision Studio process
	Debugging Tips
	Creating User Types
	Usage
	Creating User Types in a Program
	Accessing Structure Fields
	Saving User Types
	Related Program Examples

